Stochastic Adaptive Robust Approach in the Optimal Bidding Behavior of a Virtual Power Plant in the Multi-Market Setup

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Hydropower in Sweden is a powerful and efficient source of energy due to its flexibility, usually used to balance the Swedish power system. With the transition of power system into more intermittent power sources, the role of hydro-power as producers will become more important. Thus the optimal scheduling of hydropower units, with other assets, holds an important place in electric power systems, which is significantly investigated as a research issue. This thesis presents an optimization model that aims at maximizing the income of that producer. The model is implemented on a virtual power plant trading in both day-ahead and mFRR balancing markets in the SE2 bidding zone in Sweden. The virtual power plant comprises hydo-power plants located on the Swedish river Skellefteälven, a wind power unit, and a storage unit. This system participates in electricity market as a single entity in order to optimize the use of energy resources. As feature, uncertainty in electricity market price, wind power production and in active-time duration in the mFRR energy market are modeled in order to formulate a so-called stochastic adaptive robust optimization model. The latter is solved using a column-and-constraint generation algorithm, solved by GAMS and Matlab. A bid curve analysis is performed showing the optimal strategy in case of low/high price scenario and the level of conservativeness. After that, a revenue assessment is carried out which in turn leads to an investigation of the interaction between the three assets and the impact of the storage facility in the revenue. Results demonstrate the advantage of the battery in increasing profit in some cases and its flexibility in the use of storing energy and selling it to the markets at suitable times, e.g., it saves energy from the wind in hours of comparatively low prices, while it sells it in hours of comparatively high prices. Finally, an assessment on variation of imbalance costs is held with and without battery, comparing how such virtual power plants reduce the imbalance costs.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)