EM emissions test platform implementationfor satellite electric propulsion systems andelectronic subsystems

University essay from Luleå tekniska universitet/Rymdteknik

Abstract: Modern gridded ion thrusters for CubeSats operate by generating high power and canpose challenging problems with Electromagnetic Interference (EMI). In order to verifycompatibility with neighbouring equipment, strict standards such as the militarystandard MIL-STD-461G, are required to be followed to achieve ElectromagneticCompatibility (EMC). To avoid abrupt and cataclysmic delays in production time, incase the product fails to comply with the requirements, companies integrate in-housepre-compliance tests into their development phase. The objective is to implementin-house measurement methods on an electric propulsion model NPT30 developedby ThrustMe. This document explains the process and methods to perform conductedemission test on power lines and radiated emission tests in the magneticfield. A custom measurement system integrity verification was developed for theradiated emission test. The presented results provide the engineers at ThrustMe aninsight on the electromagnetic behaviour on the ion thruster NPT30 and whethermodifications need to be included in the next development iteration to mitigate forthe detected excessive emission levels. When EMC methods are implemented earlyon in the development process, there are more pre-emptive mitigation options withless costs in time and money. By performing in-house pre-compliance tests andtaking measures to prepare for the tests at a certified EMC test house, the companycan be more confident in their product at passing the EMC tests. Based on the twoperformed in-house tests, the engineers at ThrustMe began to include mitigationmethods in the following circuit design iterations.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)