Effects of skin care ingredients on keratinocytes : - Interplay between osmotic stress, cell viability, and gene expression towards increased understanding of keratinocyte differentiation

University essay from Malmö universitet/Fakulteten för hälsa och samhälle (HS)

Abstract: The epidermis is composed of multiple cell strata where viable keratinocytes, in the basal layer (stratum basale (SB)), go through a range of steps with the final stage of being dead corneocytes in the outer most layer (stratum corneum (SC)). The differentiation, which can be thought of as programmed cell death, include several key processes that are essential for an intact skin barrier. The route from SB to SC is accompanied by changes, such as osmotic pressure and pH, that are believed to trigger some of these processes. In this project, HaCaT cells were incubated with, commonly used, skin care substances (urea, glycerol, transcutol and salicylic acid) to assess their impact on cell viability, by MTT-assay, and gene expression, by qPCR. Further, the relationship between osmotic pressure, viability and gene expression was studied. The excipients showed a dose-dependent decrease of keratinocyte viability which also was explained by elevated osmotic pressure when concentration was increased. Exceptions were however observed for transcutol, which showed protective features against osmotic stress. Upregulation of the genes were mainly observed when cells were treated with high concentrations. Involucrin was affected by the substances to a greater extent when compared to other markers. The upregulation of involucrin was however seen to be driven by the osmotic pressure rather than biological effects of the molecules. The project conclude that the viability and gene expression of the keratinocytes are highly related to the osmotic pressure and probably influences the differentiation to a greater extent than the molecules themselves.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)