Waste Heat Driven Membrane Distillation Integrated with Stirling Engine

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: In this thesis, the potential to purify water utilizing waste heat from a unit which stores thermal energy and converts it to electricity is studied. The unit, called TES.POD, is developed by Azelio AB and is in this thesis used as a heat source to drive an air gap membrane distillation (AGMD) unit developed by Scarab Development AB. Heat from the TES.POD and ambient air temperature constitutes a temperature difference over a membrane used as a driving force to vaporize a part of the water that transfer through the membrane, and later condensates as clean distilled water as the contaminations stays in the hot stream of feed water. An analysis has been conducted to determine quasi-steady performance of the combined system for estimating the amount of purified water that can be supplied when the TES.POD unit is in peak electricity discharge mode. The 26 kW of waste heat accessible from the TES.POD is shown to enable two AGMD-modules producing purified water at a production of 7, 1l/h per unit having the feed water at 50°C and cooling water at 25°C. A correlation between the amount of waste heat and distilled water production is determined, as the TES.POD could be configured to produce less electricity and more waste heat at a higher temperature. The correlation showed that an 9% increase in cooling temperature, lead to an 30% increase in pure water output and a 33% decrease in electricity output. The results show that when implementing the two companies’ units together, a system that both provides electricity and distilled water is obtained. This is a system with a high demand, especially in off-grid areas with lack of both resources but with accessible renewable energy sources. Moreover, by using waste heat to purify water, it can also reduce the production cost compared to cases where conventional energy sources are used. The potential revenue of the production was estimated to 673 790 SEK/year with an implementation cost of 93 861 SEK with yearly operational expenses estimated to 14 080 SEK/year.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)