Silicon photonics based MEMS tunable polarization rotator for optical communications

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: There has been a huge surge in data traffic all over the world due to the rise of streamingmedia services and connected devices. The current demand in data traffic has alreadypushed the optical fiber in the internet architecture to the network edges and the trend isto push it as close as possible, to the CPU. Silicon photonics addresses this challenge byenabling miniaturized optical devices that use light to move huge amounts of data at veryhigh speeds with extremely low power. To further improve the data transmission capacity,one can make use of different polarizations of light. However, to take advantage ofdifferent polarizations, devices with on-chip polarization rotation capability are required.This is achieved by a tunable polarization rotator. Moreover, full control of polarizationrotation can also be utilized to realize a new class of components in integrated photonicsincluding polarization mode modulators, multiplexers, filters, as well as switches foradvanced optical signal processing, coherent communications, and sensing.This thesis introduces a novel tunable polarization rotator that uses microelectromechanicalsystems (MEMS) as its actuation principle. When voltage is applied to a MEMStunable silicon cantilever, a mechanical movement occurs, which in turn affects theoptical mode shape travelling through a waveguide, as a result of which the polarizationis rotated. In this work, a MEMS tunable polarization rotator is designed, fabricated,and characterized with a polarization extinction ratio of 10 dB, which works in 1530nm -1570nm wavelength spectrum. In addition to the MEMS tunable polarization rotator,in this thesis, a free standing polarization beam splitter of length 1.4 μm, the shortestreported to-date to our knowledge, was designed, fabricated, and characterized. Thetunable polarization rotator and beam splitter developed in this thesis have the potentialto increase the bandwidth and flexibility of current optical communication networks, andfind further applications in polarization diversity schemes for sensing.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)