Comparative study on road and lane detection inmixed criticality embedded systems

University essay from KTH/Mekatronik

Abstract: One of the main challenges for advanced driver assistance systems (ADAS)is the environment perception problem. One factor that makes ADAS hardto implement is the large amount of different conditions that have to betaken care of. The main sources for condition diversity are lane and roadappearance, image clarity issues and poor visibility conditions. A review ofcurrent lane detection algorithms has been carried out and based on that alane detection algorithm has been developed and implemented on a mixedcriticality platform. The thesis is part of a larger group project consisting offive master thesis students creating a demonstrator for autonomous platoondriving. The final lane detection algorithms consists of preprocessing stepswhere the image is converted to gray scale and everything except the regionof interest (ROI) is cut away. OpenCV, a library for image processing hasbeen utilized for edge detection and hough transform. An algorithm for errorcalculations is developed which compares the center and direction of the lanewith the actual vehicle position and direction during real experiments. Thelane detection system is implemented on a Raspberry Pi which communicateswith a mixed criticality platform through UART. The demonstrator vehiclecan achieve a measured speed of 3.5 m/s with reliable lane keeping using thedeveloped algorithm. It seems that the bottleneck is the lateral control ofthe vehicle rather than lane detection, further work should focus on controlof the vehicle and possibly extending the ROI to detect curves in an earlierstage.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)