Model Based Testing for Non-Functional Requirements

University essay from Akademin för innovation, design och teknik

Abstract: Model Based Testing (MBT) is a new-age test automation technique traditionally used for Functional Black-Box Testing. Its capability of generating test cases by using model developed from the analysis of the abstract behavior of the System under Test is gaining popularity. Many commercial and open source MBT tools are available currently in market. But each one has its own specific way of modeling and test case generation mechanism that is suitable for varied types of systems. Ericsson, a telecommunication equipment provider company, is currently adapting Model Based Testing in some of its divisions for functional testing. Those divisions haven’t yet attempted adapting Model Based Testing for non-functional testing in a full-pledged manner. A comparative study between various MBT tools will help one of the Ericsson’s testing divisions to select the best tool for adapting to its existing test environment. This also helps in improving the quality of testing while reducing cost, time and effort. This thesis work helps Ericsson testing division to select such an effective MBT tool. Based on aspects such as functionality, flexibility, adaptability, performance etc., a comparative study is carried out on various available MBT tools and a few were selected among them: Qtronic, ModelJUnit and Elvior Motes.This thesis also helps to understand the usability of the selected tools for modeling of non-functional requirements using a new method. A brief idea of modeling the non-functional requirements is suggested in this thesis. A System under Test was identified and its functional behavior was modeled along with the non functional requirements in Qtronic and ModelJUnit. An experimental analysis, backed by observations of using the new proposed method indicates that the method is efficient enough to carry out modeling non-functional requirements along with modeling of functional requirements by identifying the appropriate approach.Model Based Testing (MBT) is a new-age test automation technique traditionally used for Functional Black-Box Testing. Its capability of generating test cases by using model developed from the analysis of the abstract behavior of the System under Test is gaining popularity. Many commercial and open source MBT tools are available currently in market. But each one has its own specific way of modeling and test case generation mechanism that is suitable for varied types of systems. Ericsson, a telecommunication equipment provider company, is currently adapting Model Based Testing in some of its divisions for functional testing. Those divisions haven’t yet attempted adapting Model Based Testing for non-functional testing in a full-pledged manner. A comparative study between various MBT tools will help one of the Ericsson’s testing divisions to select the best tool for adapting to its existing test environment. This also helps in improving the quality of testing while reducing cost, time and effort. This thesis work helps Ericsson testing division to select such an effective MBT tool. Based on aspects such as functionality, flexibility, adaptability, performance etc., a comparative study is carried out on various available MBT tools and a few were selected among them: Qtronic, ModelJUnit and Elvior Motes. This thesis also helps to understand the usability of the selected tools for modeling of non-functional requirements using a new method. A brief idea of modeling the non-functional requirements is suggested in this thesis. A System under Test was identified and its functional behavior was modeled along with the non functional requirements in Qtronic and ModelJUnit. An experimental analysis, backed by observations of using the new proposed method indicates that the method is efficient enough to carry out modeling non-functional requirements along with modeling of functional requirements by identifying the appropriate approach.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)