Deep Active Learning for Image Classification using Different Sampling Strategies

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Convolutional Neural Networks (CNNs) have been proved to deliver great results in the area of computer vision, however, one fundamental bottleneck with CNNs is the fact that it is heavily dependant on the ground truth, that is, labeled training data. A labeled dataset is a group of samples that have been tagged with one or more labels. In this degree project, we mitigate the data greedy behavior of CNNs by applying deep active learning with various kinds of sampling strategies. The main focus will be on the sampling strategies random sampling, least confidence sampling, margin sampling, entropy sampling, and K- means sampling. We choose to study the random sampling strategy since it will work as a baseline to the other sampling strategies. Moreover, the least confidence sampling, margin sampling, and entropy sampling strategies are uncertainty based sampling strategies, hence, it is interesting to study how they perform in comparison with the geometrical based K- means sampling strategy. These sampling strategies will help to find the most informative/representative samples amongst all unlabeled samples, thus, allowing us to label fewer samples. Furthermore, the benchmark datasets MNIST and CIFAR10 will be used to verify the performance of the various sampling strategies. The performance will be measured in terms of accuracy and less data needed. Lastly, we concluded that by using least confidence sampling and margin sampling we reduced the number of labeled samples by 79.25% in comparison with the random sampling strategy for the MNIST dataset. Moreover, by using entropy sampling we reduced the number of labeled samples by 67.92% for the CIFAR10 dataset. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)