Development of a Tool for Inverse Aerodynamic Design and Optimisation of Turbomachinery Aerofoils

University essay from KTH/Flygdynamik

Abstract: The automation of airfoil design process is an ongoing effort within the field of turbo-machinery design, with significant focus on developing new reliable and consistent methods that can meet the needs of the engineers. A wide variety of approaches has been in use for inverse airfoil design process which benefit from theoretical inverse design, statistical methods, empirical discoveries and many other ways to solve the design problem. This thesis work also develops a tool in Python to be used in airfoil aerodynamic design process that is simple, fast and accurate enough for initial design of turbo-machinery blades with focus on turbine airfoils used for operation in aircraft engines. To convey the decision-making process during development a simplified case is presented. The underlying considerations are discussed. Other available methods in the literature used for similar problems, are also evaluated and compared to demonstrate the advantages and limitations of the methods used within the tool. The inverse design problem is formulated as a multi-objective optimization problem to handle various different objectives that are relevant for aerodynamic design of turbo-machinery airfoils. Test runs are made and the results are discussed to assess how robust the tool is and how the current capabilities can be modified or extended. After the development process, the tool is verified to be a suitable option for real-life design optimization tasks and can be used as a building block for a much more comprehensive tool that may be developed in the future.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)