Life cycle assessment of hybrid systems for rural electrification in Bolivia

University essay from KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Author: Sandu Seres; [2021]

Keywords: Diesel; Stirling; Photovoltaic; impact category;

Abstract: Bolivia is a developing country in South America. Many rural communities still lack access to electricity. The extension of the National Grid System to all rural communities is not feasible due to economic and topographic challenges as well as the environmental problems that may arise. To tackle these problems, Off-grid solutions are implemented. Photovoltaic (PV) panels combined with batteries are a viable option for areas located close to the equator and high altitudes such as Bolivia. Almost always a controlled source of energy such as Diesel generators must complement the PV system due to the stochastic nature of solar energy. The use of fossil fuel can be detrimental to the environment and more environmentally friendly solutions are being investigated. The use of wood pellets in Stirling engines is a viable replacement for Diesel generators.  The purpose of this study is to investigate and compare the environmental impacts caused by two Off-grid hybrid systems. The first one is composed of a Diesel generator, PV panels, and batteries. The second one is composed of a Stirling engine, PV panels, and batteries. The study area chosen for this work is the community El Carmen, Pando, in Bolivia. A Life Cycle Assessment (LCA) model is carried out for the systems according to the 4 phases of the LCA methodology. First, individual LCA models for all midpoint impact categories are generated. Secondly, a comparative LCA between the two systems, both at midpoint and endpoint, is created. Finally, a sensitivity analysis is conducted to determine the robustness of the models.  The individual midpoint analysis of both systems showed that the controlled part of the electricity production (i.e., the Diesel generator and the Stirling engine) generated the greatest impact in the categories Global warming, Stratospheric ozone depletion, Ionizing radiation, Ozone formation, Fine particulate matter formation, Terrestrial acidification, Human carcinogenic toxicity, Land use, Fossil fuel scarcity, and Water consumption. All the processes related to the PV panels generated a greater impact in all Ecotoxicity categories (terrestrial, marine, and freshwater), Eutrophication (freshwater and marine), and Human non-carcinogenic toxicity.  The midpoint results of the comparative LCA are inconclusive. Each system received higher scores in certain categories and lower scores in others. No firm conclusion could be drawn regarding the identification of the more environmentally friendly alternative. The Diesel/PV/Batteries system dominated the Global warming, Tropospheric ozone formation, Fine particulate matter formation, Terrestrial acidification, and Fossil resource scarcity categories. The Stirling/PV/Batteries system showed a greater impact on Stratospheric ozone depletion, Ecotoxicity, Eutrophication, Human carcinogenic toxicity, Human non- carcinogenic toxicity, and Mineral resource scarcity.  The endpoint damage assessment showed that the emissions and midpoint categories described had a greater impact on Human health and Resource scarcity in the case of the Diesel/PV/Batteries system. On the other hand, the Stirling/PV/Batteries system caused greater damage to the Ecosystem category.  The sensitivity analysis was conducted in two scenarios for each system. In the first scenario, alteration of fuel transport distance, no significant changes were detected in all endpoint categories. In the second scenario, alteration of Diesel/Stirling Contribution, the model showed an increasing trend (~30% for the first system and ~25% for the second one) in all categories when the contribution of the controlled part of the electricity production was increased. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)