An Experimental Study of the High-Lift System and Wing-Body Junction Wake Flow Interference of the NASA Common Research Model

University essay from KTH/Optimeringslära och systemteori

Abstract: This thesis investigates the turbulent flow in the wake of the wing-body junction of the NASA Common Research Model to further reveal its complex vortical structure and to contribute to the reference database used for Computational Fluid Dynamics validation activities. Compressible flows near two wall-boundary layers occurs not only at the wing-body junction but at every control surface of an airplane, therefore increased knowledge about this complex flow structure could potentially improve the estimates of drag performance and control surface efficiency, primarily for minimizing the environmental impact of commercial flight. The airplane model is modified by adding an inboard flap to investigate the influence from the deflection on the vorticity and velocity field. Future flap designs and settings are discussed from a performance improvement point of view, with the investigated flow influence in mind. The experimental measurements for this thesis were collected using a Cobra Probe, a dynamic multi-hole pressure probe, for Reynolds numbers close to one million based on the wing root chord. A pre-programmed three-dimensional grid was used to cover the most interesting parts of the junction flow. The facility used for the tests is a 120 cm by 80 cm indraft, subsonic wind tunnel at NASA Ames Research Center’s Fluid Mechanics Lab, which provides an on-set flow speed of around Mach 0.15, corresponding to approximately 48 m/s.  

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)