Model based design of an expiratory valve and voice-coil actuator and evaluation of complete expiratory system performance with a PI controller

University essay from KTH/Maskinkonstruktion (Inst.)

Abstract: Mechanical ventilators are devices in critical care to assist breathing in case of expiratory dysfunction. The expiratory valve is a critical component to the ventilator as it controls the pressure in the patient’s lungs. The design process of a new expiratory valve assembly is a time consuming one due to the wide range of possible design solutions both the voice-coil actuators and membrane valves typically used in ventilators. This thesis evaluates the possibility of creating and using analytical models for model based development to speed up the early design phases of a expiratory valve assembly. The main components, voice-coil actuator and membrane valve are modelled separately and experimentally verified. A complete expiratory system model and hardware-in-the-loop test setup are constructed in order to explore how well can the dynamic properties and control performance of valve assembly be predicted. Finally various questions in the valve assembly design are explored and a new design is proposed to demonstrate the capabilities of the model based approach. The resulting voice-coil and membrane valve models can be considered accurate enough for fast exploration of the design space, as an error rate below 10% is reached without manual tuning for each design.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)