Carbon materials from biomass for supercapacitors

University essay from KTH/Tillämpad fysik

Abstract: The fast pyrolysis plant at RISE – ETC, Piteå produces carbon rich chars in bulk from various sources of biomass as feedstock. These in-house manufactured carbon rich chars were upgraded via pyrolysis as well as chemical activation using KOH to enhance their potential as an electrode material for supercapacitors. Commercial activated charcoal (Merck) was also studied and used as a yardstick for comparing performance of our materials. Investigations using EDX show enrichment in carbon content and very low amounts of impurities in the materials prepared from wood char after specific treatments for upgrading. Two-electrode coin cell apparatus with an aqueous electrolyte was used to determine the electrochemical performance of these materials. Wood char after KOH activation shows a high specific capacitance of ~105 Fg-1 at 2 Ag-1 in galvanostatic charge discharge measurements which outperformed activated charcoal used in this study (~68 Fg-1 at 2 Ag-1). This material was tested in a wide range of conditions (current density ranging from 0.1 Ag-1 to 10 Ag-1) and showed specific capacitance from ~90 Fg-1 (for 10 Ag-1) up to ~118 Fg-1 (for 0.1 Ag-1). Fatigue testing for >20000 cycles showed a remarkably high retention (>96%) of capacitance. Currently, most commercial supercapacitors use activated carbon materials prepared from coconut shells as the active electrode material which are not native to Sweden. In this study, we upgrade wood chars produced at RISE – ETC from biomass sources obtained locally (Sweden and Scandinavia) and demonstrate their applicability as supercapacitor electrode materials.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)