Network Performance Improvement for Cloud Computing using Jumbo Frames

University essay from KTH/Radio Systems Laboratory (RS Lab)

Abstract: The surge in the cloud computing is due to its cost effective benefits and the rapid scalability of computing resources, and the crux of this is virtualization.  Virtualization technology enables a single physical machine to be shared by multiple operating systems. This increases the eciency of the hardware, hence decreases the cost of cloud computing. However, as the load in the guest operating system increases, at some point the physical resources cannot support all the applications efficiently. Input and output services, especially network applications, must share the same total bandwidth and this sharing can be negatively affected by virtualization overheads. Network packets may undergo additional processing and have to wait until the virtual machine is scheduled by the underlying hypervisor before reaching the final service application, such as a web server.In a virtualized environment it is not the load (due to the processing of the user data) but the network overhead, that is the major problem. Modern network interface cards have enhanced network virtualization by handling IP packets more intelligently through TCP segmentation offload, interrupt coalescence, and other virtualization specific hardware. Jumbo frames have long been proposed for their advantages in traditional environment. They increase network throughput and decrease CPU utilization.  Jumbo frames can better exploit Gigabit Ethernet and offer great enhancements to the virtualized environment by utilizing the bandwidth more effectively while lowering processor overhead. This thesis shows a network performance improvement of 4.7% in a Xen virtualized environment by using jumbo frames.  Additionally the thesis examines TCP's performance in Xen and compares Xen with the same operations running on a native Linux system.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)