83% Efficient ASIC Wireless Power Transfer from NFC for Implantable Sensors

University essay from Linköpings universitet/Elektroniska Kretsar och System

Abstract: In the past decades, there has been a noticeable growth in the deployment of wireless sensor networks. These sensors/stimulators are typically powered by a battery which has limited life span. Power harvesting is one of the solutions to this problem. According to a medical-care experiment, the recovery process of an injured nerve has been boosted with the help of electrical stimulator. The latter is not only preferable to be portable but to be implantable as well in order to make medical treatment easier on the patient. This work has implemented two prototype versions of rectification circuitry used to harvest RF signal to power an electrical stimulator for peripheral nerve regeneration. The system consists an efficient rectifier, DC-limiter, biasing circuitry and modest regulator. In order to gain higher rectification efficiency, ON-OFF offset methodology is reviewed. Moreover, a mixed-signal design is proposed to construct a delay compensation mechanism. It is designed with 0.35 um AMS technology and it is assumed to read 13.56 MHz NFC signal from loop antennas. Schematic and layout levels are introduced with corresponding simulation findings. Moreover, tape-out is made for both architectures along with comparative results/discussions.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)