Effects of cracking of coupling beams onhigh rise towers subjected to wind load

University essay from KTH/Betongbyggnad

Abstract: In high rise towers, reinforced concrete elevator shafts with coupling beams are extensively used as a principal structural element to resist lateral loads. The lateral load resistance of the tower is dominantly dependent on the stiffness of the load-bearing walls, and coupling beams connecting them. In an interest to study the reduction in the stiffness of high rise tower due to cracking in the coupling beams, variability in the reinforcement content, concrete grade and the effect of joint flexibility at the beam-wall intersection, this master thesis presents the analytical and finite element approaches to determine the equivalent height of the concrete coupling beams and the overall global stability of the high-rise tower. A comprehensive parametric study on 240 combinations of reinforced concrete coupling beams and 48 models of the global tower has been carried out to backtrack the effective stiffness of the RC coupling beams from the load-deflection curve. As a result, the stiffness and the equivalent height of coupling beams are computed and plotted as a function of the concretegrade, reinforcement content and aspect ratio. Additionally, the tip deflections of the towers for both the cracked & reinforced and un-reinforced & un-cracked models are also plotted as functions of the concrete grade, reinforcement content and aspect ratio.The obtained results show that the stiffness ratio and the ratio of the equivalent height to the normal height increase with the increase in the longitudinal reinforcement ratio and aspectratio but decrease with an increase in the concrete grade for both analytical and finite element methods. The tip deflection of tower is not significantly affected by an increase in the reinforcement content of slender coupling beams and vice versa for both the analytical and the finite element method. Independently of the slenderness of the composing coupling beams, the stiffness increases significantly with an increase in the concrete grade. These results show a good picture on how to choose the equivalent height in the model with no reinforcement. So, the developed diagram will be a more practical method for the designer of awhole building at the early stage design. Thick coupling beams need to be reinforced to reach the gross section’s stiffness while slender sections will have a higher stiffness with reinforcement. This would help the designer to find a more rational model without reinforcement. Using Hans Petersson’s analytical method, regarding the joint flexibility at the beam wall intersection, to exploit the full capacity of a concrete coupling beam section, the stiffness should be reduced. For global models, independently of the slenderness of the composing coupling beams, the stiffness increases significantly with an increase in the concrete grade.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)