Molecular Detection of Antibiotic Resistance Genes in Sludge from Wastewater Treatment

University essay from Örebro universitet/Institutionen för naturvetenskap och teknik

Abstract: Bacterial antibiotic resistance is an increasing global health problem, leaving few therapeutic options available for the treatment of pathogenic infections. The development of new antibiotics has been slow since their discovery more than 8 decades, therefore, monitoring the extent and distribution of antibiotic resistance is of great importance. The aim of this study was to determine the presence of antibiotic resistance genes in sludge samples obtained from three wastewater treatment plants (WWTPs) in Sweden. Samples were collected and analyzed for the presence of nalidixic acid (NA), chloramphenicol (CHL), and tetracycline (TC) resistance genes using polymerase chain reaction (PCR). The DNA extracted from Eskilstuna and MälarEnergi sludge showed the presence of NA and TC resistance genes, whereas Örebro sludge was found to have resistance for TC antibiotic genes. To validate the results, PCR detection for resistance genes was performed on Escherichia coli isolates from the sludge samples. Antibiotic susceptibility testing was used to confirm the genetic analysis for antibiotic resistance genes detection in these E. coli. The PCR results for TC resistance genes correlated between sludge PCR analysis and bacterial isolates for all 3 WWTPs. Based on the results obtained from the genotypic analysis of sludge and E coli, incomplete compatibility in regards to NA, and CHL were observed. However on the basis of antibiotic susceptibility testing, E coli isolates from MälarEnergi sludge samples unveiled the majority presence for antibiotic resistance genes. The results suggest that extra monitoring for the wastewater treatment facilities are vital to minimize the rising incidence of antibiotic resistant bacteria.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)