Performance Indicators for Smart Grids : An analysis of indicators that measure and evaluate smart grids

University essay from Mälardalens högskola/Akademin för ekonomi, samhälle och teknik

Abstract: Sweden has developed ambitious goals regarding energy and climate politics. One major goal is to change the entire electricity production from fossil fuels to sustainable energy sources, this will contribute to Sweden being one of the first countries in the world with non-fossil fuel in the electricity sector. To manage this, major changes need to be implemented and difficulties on the existing grid will occur with the expansion of digitalization, electrification and urbanization. By using smart grids, it is possible to deal with these problems and change the existing electricity grid to use more distributed power generation, contributing to flexibility, stability and controllability. The goal with smart grids is to have a sustainable electricity grid with low losses, security of supply, environmental-friendly generation and also have choices and affordable electricity for customers. The purpose of this project is to identify and evaluate several indicators for a smart grid, how they relate and are affected when different scenarios with different technologies are implemented in a test system. Smart grid indicators are quantified metrics that measure the smartness of an electrical grid. There are five scenarios where all are based on possible changes in the society and electricity consumption, these scenarios are; Scenario A – Solar power integration, Scenario B – Energy storage integration, Scenario C – Electric vehicles integration, Scenario D – Demand response and Scenario E – Solar power, Energy storage, Electric vehicles and Demand response integration. A model is implemented in MATLAB and with Monte Carlo simulations expected values, standard deviation and confidence interval were gained. Four selected indicators (Efficiency, capacity factor, load factor and relative utilization) was then analyzed. The results show that progress on indicators related to all smart grid characteristics is needed for the successful development of a smart grid. In scenario C, all four selected indicators improved. This shows that these indicators could be useful for promoting the integration of electric vehicles in an electricity grid. In Scenario A, solar power integration contributed to all indicators deteriorate, this means that, technical solutions that can stabilize the grid are necessary to implement when integrating photovoltaic systems. The load factor is a good indicator for evaluating smart grids. This indicator can incentivize for an even load and minimize the peak loads which contributes to a flexible and efficient grid. With the capacity factor, the utilization and free capacity can be measured in the grid, but it can counteract renewable energy integration if the indicator is used in regulation.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)