Evaluations of how carbon dioxide calculations can be integrated into 3D models at an early design stage for more efficient Life Cycle Assessments on buildings

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Life Cycle Assessments on buildings and various environmental certificates are starting to become customary for newbuilding projects in Sweden. Building materials play a big part in a building’s environmental impact. Earlier research indicates that Life Cycle Assessments is not a routine in today’s construction process and it may depend on uncertainties in the methods of quantifying carbon dioxide emissions. This master thesis focuses on how equivalent carbon dioxides, a standard unit to quantify greenhouse gas emissions, of building materials can be integrated with Building Information Modelling. Through meetings with experts in the field, data has been collected. A 3D model of a house was built in order to evaluate both an integration with a cost calculation tool and directly with the 3D model. The results showed how the cost calculation tool works for calculations of equivalent carbon dioxides, early in the pre-construction phase. Difficulties in finding corresponding materials in their database were found and issues with summarizing carbon dioxide data. The integration directly into the 3D model, with visual programming, proved an insert for each materials’ carbon dioxide emissions worked. This allows further updates throughout the building process. It was also possible to import material information to a carbon dioxide calculation tool. This evaluation opened up a possibility to change and update carbon dioxide emissions at an early design stage of a building process with Building Information Modelling along with a need of organizational change due to today's traditional building processes.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)