Biolayer development in a slow sand filter in Ghana : Designing a filter that is benefiting the biolayer development under local conditions

University essay from Karlstads universitet/Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)

Abstract: In 2015, the United nations presented the 17 Global Goals that would put an end to extreme poverty, inequality and climate change by 2030. One of these goals was clean water and sanitation. In 2015 1.8 billion people did not have access to clean water. Because of the contaminated water, one million people die every year worldwide. Africa, and especially Ghana, has had a high development in the recent years. The population has grown and more resources are needed. Clean water in Ghana is not a given matter, three million people live without access to clean water. To work towards the Global Goal water can be clean locally. A simple and cheap way is to build slow sand filters, which also are the purpose of this project. These filters purify the water mechanically, chemically and biologically. The biologically purification takes place in the biolayer that grows on the sand inside the filter and it consumes contaminants in the water. It takes about a month for the biolayer to be fully developed and clean the water to its full potential. The positive aspects with sand filters are that people get healthier and can save money that can be invested in education or business. It can also reduce the need for water in plastic bags or bottles and would reduce littering. The companies that produce this water could end their business and air pollutions would be reduced as well.   During this project, slow sand filters have been tested and evaluated in Sweden and Ghana with the purpose to develop a theoretical filter that benefits the biolayer under local conditions in Ghana, this was of the one aims. Experiments in Sweden showed that the flow decreased with increased sand height and decreased hydraulic head. In Ghana three filters were built with the sand heights 30, 50 and 80 cm to clean 7 litres of drinking water for a family of four. None of these produced drinkable water by WHO’s and EU’s standards.   The next aim was to understand which chemical and physical factors that effected the development of the biolayer. The detected relations were absolute conductivity, total alkalinity, coliform bacteria and oxidantial reduction potential which were between the biolayer in the 30 and 50 filters.   The flow rate in Ghana was too high and to lower it, a new diffuser with smaller holes would be built to get the recommended flow of 0,4 m3/m2/h. A too high flow broke the bound between the biolayer and made an uncomfortable environment. A sedimentation should be installed before the sand filter to reduce the variations of the incoming water such as turbidity, suspended solids etc., so the biolayer would flourish. It was not enough dissolved oxygen in the water so the pause period would be decreased to 12 hours to get more oxygen in the filter each day. For a sand filter to work as planned a lot of attention should be given to the filter. It is a system that should be used all the time for the best purification. To build a filter takes a lot of time and it also takes time for the biolayer to develop. If it is not going to be used much, another treatment method should be used.   The last aim was to evaluate the cost of the materials that could be bought locally to the filter. One filter cost about 130 GHS.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)