LSTM Neural Network Models for Market Movement Prediction

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Interpreting time varying phenomena is a key challenge in the capital markets. Time series analysis using autoregressive methods has been carried out over the last couple of decades, often with reassuring results. However, such methods sometimes fail to explain trends and cyclical fluctuations, which may be characterized by long-range dependencies or even dependencies between the input features. The purpose of this thesis is to investigate whether recurrent neural networks with LSTM-cells can be used to capture these dependencies, and ultimately be used as a complement for index trading decisions. Experiments are made on different setups of the S&P-500 stock index, and two distinct models are built, each one being an improvement of the previous model. The first model is a multivariate regression model, and the second model is a multivariate binary classifier. The output of each model is used to reason about the future behavior of the index. The experiment shows for the configuration provided that LSTM RNNs are unsuitable for predicting exact values of daily returns, but gives satisfactory results when used to predict the direction of the movement.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)