Estimating Football Position from Context

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Tracking algorithms provide the model to recognize objects’ motion in the past. Moreover, applied to an artificial intelligence algorithm, these algorithms allow, to some degree, the capacity to forecast the future position of an object. This thesis uses deep learning algorithms to predict the ball’s position in the three-dimensional (3D) Cartesian space given the players’ motion and referees on the 2D space. The algorithms implemented are the encoder-decoder attention-based Transformer and the Inception Time, which is comprised of an ensemble of Convolutional Neural Networks. They are compared to each other under different parametrizations to understand their ability to capture temporal and spatial aspects of the tracking data on the ball prediction. The Inception Time proved to be more inconsistent on different areas of the pitches, especially on the end-lines and corners, motivating the decision to choose the Transformer network as the optimal algorithm to predict the ball position since it achieved less volatile errors on the pitch. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)