CFD Simulation of a Fin-Tube Evaporator under icing

University essay from Linköpings universitet/Mekanisk värmeteori och strömningslära

Abstract: The study involves development of a methodology to simulate a fin-tube evaporator under icing conditions using CFD in Ansys® Academic Fluent 2021R1. It aims to build on previous studies performed on heat pumps. It was performed by Abhay M. Hervatte in collaboration with Bosch Thermoteknik AB, Tranås, SE during the spring term of the year 2021. The thesis is published by Linköping University. Initially, experiments were conducted to measure the ice growth on the fins of the evaporator as a function of time. A CAD model of the evaporator was then generated. The evaporator geometry was scaled down and simplified to reduce the simulation time. Due to restrictions in the software, the simulations were split into two parts - one for the flow of the refrigerant through the evaporator pipes and another for flow of air over the fins. The internal flow simulation was a steady state simulation consisting of the phase-change of the refrigerant after absorbing heat from the ambient. through the pipes and a transient simulation for the external flow over the fins. The internal flow consisted of multi-phase simulation of the evaporation of the refrigerant - propane - after absorbing heat through the pipe walls. The external flow involved the multi-phase simulation of ice being deposited from humid air on the surface of the fins. The inner surface of the evaporator pipes was used as a bridge, and surface profiles from the internal simulation would be used to transfer the boundary conditions to the other simulation. Results of the ice-film thickness over the fins were obtained and compared to the experimental value and found to be in reasonable agreement with each other, with scope for improvement in the future.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)