Linear Induction Motor Investigation and Design for Articulated Funiculator

University essay from KTH/Elektrisk energiomvandling

Abstract: Articulated Funiculator is a new and innovative concept developed by Tyréns forachieving a more efficient vertical transportation with a higher space utilization.Having a variety of merits, i.e.: simple construction, direct electromagneticthrust propulsion, and high safety and reliability in contrast to rotary inductionmotor, linear induction motor (LIM) is considered to be one of the cases as thepropulsion system for Articulated Funiculator. The thesis is then carried outwith the purpose of determining the feasibility of this study case by designing theLIMs meeting some specific requirements. The detailed requirements include: aset of identical LIMs are required to jointly produce the thrust that is sufficientto vertically raise the moving system up to 2 m/s2; the size of the LIMs cannotexceed the specification of the funiculator; the maximum flux density in the airgap for each LIM is kept slightly below 0.6 T; no iron saturation of any part ofthe LIMs is allowed.In this thesis report, an introduction of LIM is firstly presented. Followingthe introduction, relevant literature has been reviewed for a strengthenedtheoretical fundamentals and a better understanding of LIM’s history and applications. A general classification of LIMs is subsequently introduced. In addtion,an analytical model of the single-sided linear induction motor (SLIM) has beenbuilt based on an approximate equivalent circuit, and the preliminary geometryof the SLIM is thereby obtained. In order to acquire a more comprehensiveunderstanding of the machine characteristics and a more precise SLIM design, atwo-dimensional finite element method (2D-FEM) analysis is performed initiallyaccording to the preliminary geometry. The results, unfortunately, turn out tobe iron severely saturated in the teeth and yoke, and a excessive maximumvalue of air-gap flux density. Specific to the problems, different parameters ofthe SLIM are marginally adjusted and a series of design scenarios are run inFlux2D for 8-pole and 6-pole SLIM. The comparisons between the results areconducted and the final solution is lastly chosen among them.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)