Advanced Oxidation Processes for removal of COD from pulp and paper mill effluents : A Technical, Economical and Environmental Evaluation

University essay from KTH/Industriell ekologi

Abstract: In Sweden, the dominating source for emissions of degradable organic substances to water is the pulp and paper industry. The organic substances increase oxygen consumption in the recipient which subsequently threatens aquatic species. Improved process engineering, process closures and use of external treatments have in recent years drastically lowered the Biological Oxygen Demand (BOD). However, the Chemical Oxygen Demand (COD) has not been reduced to the same extent, as some organic substances are more persistent and must be treated with more advanced techniques. Chemical precipitation, which can bind large parts of the remaining COD into solid matter, making it possible to be removed from the effluent by various separation technologies, contributes to an efficient COD removal. However, the direct operating cost for the treatment is high as large amount of chemicals are used in the process, and large quantities of sludge generated. In the near future EU pulp and paper industry will have to meet new regulatory demands on COD discharges, and pulp mills in Asia, South-America and Oceania will meet stringent discharge demands. It is therefore of interest to review alternative treatments in regards to technical, environmental and economical feasibility in the treatment of pulp and paper mill wastewaters. Much interest has been shown for Advanced Oxidation Processes (AOP), which is why these techniques have been evaluated in this thesis. The first part of the report consists of a literature review where processes with the following oxidants have been reviewed: 1. Ozone (O3); 2. Ozone + Hydrogen peroxide (O3/H2O2); 3. Fenton’s reagent (Fe2+/ H2O2); 4. Ozone + Ultraviolet light (O3/UV); 5. Hydrogen peroxide + Ultraviolet light (H2O2/UV); 6. Photo-Fenton’s reagent (Fe2+/ H2O2/UV); 7. Titanium dioxide + Ultraviolet light (TiO2/UV). Ozone treatment (1) and ozone in combination with hydrogen peroxide (2) were chosen for further experimental studies. The experiments were conducted at Wedecos (Xylem Water Solutions) laboratory in Germany and tested on wastewater from three different Swedish mills: A, B and C. The experimental results indicate that treatment with ozone is an efficient method for elimination of COD from pulp and paper mill wastewaters. A relatively high COD reduction (41 % for Mill A, 31% for Mill B and 53% for Mill C) was achieved for all wastewaters with an applied ozone dosage of 0.2g O3/L, without an appreciable impact on other parameters such as pH, N-tot, NO2-, NO3-, NH4+, P-tot and PO43-. There are indications that the nature of the wastewater has an impact on the COD removal efficiency and that TMP wastewater is easier to oxidize in comparison to wastewater from sulphate mills. The combination with hydrogen peroxide did not show any further COD reduction compared to ozone treatment alone, thus confirming the results Ko et al. showed in their study in 2009. Oxidation with ozone is seen as more environmental alternative in comparison to chemical treatment (precipitation/flocculation) because contaminants in the wastewater are destructed rather than concentrated or transferred into a different phase, which leads to the decrease of COD, colour and toxicity without the need to handle large amounts of sludge. However, a subsequent biological treatment may be necessary for removal of BOD as a BOD increase is registered for all wastewater treated in this study. The costs are on the other hand higher in comparison to chemical treatment even though there are indications of cases when treatment with ozone can be profitable (e.g. if the cost for sludge handling increases in the future, price for chemicals increases and electricity price decreases). There are some uncertainties regarding the system and there is no clear evidence that toxic by-products are not formed. More research must be done and more full-scale installations must be reported before the pulp and paper industry is willing to invest in oxidation technology.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)