Quality Assurance of Intra-oral X-ray Images

University essay from Umeå universitet/Radiofysik

Abstract: Dental radiography is one of the most frequent types of diagnostic radiological investigations performed. The equipment and techniques used are constantly evolving. However, dental healthcare has long been an area neglected by radiation safety legislation and the medical physicist community, and thus, the quality assurance (QA) regime needs an update. This project aimed to implement and evaluate objective tests of key image quality parameters for intra-oral (IO) X-ray images. The image quality parameters assessed were sensitivity, noise, uniformity, low-contrast resolution, and spatial resolution. These parameters were evaluated for repeatability at typical tube current, voltage, and exposure time settings by computing the coefficient of variation (CV) of the mean value of each parameter from multiple images. A further aim was to develop a semi-quantitative test for the correct alignment of the position indicating device (PID) with the primary collimator. The overall purpose of this thesis was to look at ways to improve the QA of IO X-rays systems by digitizing and automating part of the process. A single image receptor and an X-ray tube were used in this study. Incident doses at the receptor were measured using a radiation meter. The relationship between incident dose at the receptor and the output signal was used to determine the signal transfer curve for the receptor. The principal sources of noise in the practical exposure range of the system were investigated using a separation of noise sources based upon variance. The transfer curve of the receptor was found to be linear. Noise separation showed that quantum noise was the dominant noise. Repeatability of the image quality parameters assessed was found to be acceptable. The CV for sensitivity was less than 3%, while that for noise was less than 1%. For the uniformity measured at the center, the CV was less than 10%, while the CV was less than 5% for the uniformity measured at the edge. The low-contrast resolution varied the most at all exposure settings investigated with CV between 6 - 13%. Finally, the CV for the spatial resolution parameters was less than 5%. The method described to test for the correct alignment of the PID with the primary collimator was found to be practical and easy to interpret manually. The tests described here were implemented for a specific sensor and X-ray tube combination, but the methods could easily be adapted for different systems by simply adjusting certain parameters. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)