Tribological testing of rotary drill bit inserts

University essay from Tillämpad materialvetenskap

Abstract: The aim of this thesis work was to design and evaluate a wear test method for cemented carbides inserts used in rotary drilling. An appropriate in-house wear test method would provide a better understanding of the wear mechanisms limiting tool life in real drilling. The test method should be easy to use and be able to distinguish between wear of insert materials with different microstructure and properties. The literature study showed few published articles about wear tests and mechanisms concerning rotary drill bit inserts. These methods included two standard wear tests; ASTM G65 and ASTM B611. Furthermore, a modified ASTM G65 test was found as well as an impact-abrasion test. In this work the modified ASTM G65 test, using a rock counter surface, was evaluated in order to understand if the method would mimic the wear of cemented carbides used in rotary drilling. The test method was further developed and showed high repeatability. Measured weight losses showed that the test could distinguish between two common rotary grade materials with a small difference in hardness but with different microstructures. The wear of the tested materials was analyzed with scanning electron microscopy and compared with rotary drill bit inserts collected from the field. The modified test method proved able to produce wear by mechanisms very similar to those found on field worn inserts. Identified wear mechanisms included cracking, fragmentation and spalling of WC grains as well as embedded fragments of WC grains on the surface. In addition, the binder phase was removed and adhered material from the counter surface was detected.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)