GIS-based crisis communication : A platform for authorities to communicate with the public during wildfire

University essay from KTH/Geoinformatik

Abstract: Today, people are used to having technology as a constant aid. This also sets expectations that information should always be available. This, together with ongoing climate change that has led to more natural disasters, has laid the foundation for the need to change the methodology for how geographical data is collected, compiled and visualized when used for crisis communication. This study explores how authorities, at present, communicate with the public during a crisis and how this can be done in an easier and more comprehensible way, with the help of Geographical Information Systems (GIS). The goal is to present a new way of collecting, compiling and visualizing geographical data in order to communicate, as an authority, with the public during a crisis. This has been done using a case study with focus on wildfires. Therefore, most of the work consisted of the creation of a prototype, CMAP – Crisis Management and Planning, that visualizes fire-related data. The basic work of the prototype consisted of determining what data that exists and is necessary for the information to be complete and easily understood together with how the data is best implemented. The existing data was retrieved online or via a scheduled API request. Eventrelated data, which is often created in connection with the event itself, was given a common structure and an automatic implementation into the prototype using Google Fusion Tables. In the prototype, data was visualized in two interactive map-based sections. These sections focused on providing the user with the information that might be needed if one fears that they are within an affected location or providing the user with general preparatory information in different counties. Finally, a non-map-based section was created that allowed the public to help authorities and each other via crowdsource data. This was collected in a digital form which was then directly visualized in the prototype’s map-based sections. The result of this showed, among other things, that automatic data flows are a good alternative for avoiding manual data handling and thus enabling a more frequent update of the data. Furthermore, it also showed the importance of having a common structure for which data to be included and collected in order to create a communication platform. Finally, by visualizing of dynamic polygon data in an interactive environment a development in crisis communication that can benefit the public’s understanding of the situation is achieved. This thesis is limited to the functionality and layout provided by the Google platform, including Google Earth Engine, Google Forms, Google Fusion Tables etc

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)