Deep Neural Networks for Context Aware Personalized Music Recommendation : A Vector of Curation

University essay from KTH/Skolan för datavetenskap och kommunikation (CSC)

Abstract: Information Filtering and Recommender Systems have been used and has been implemented in various ways from various entities since the dawn of the Internet, and state-of-the-art approaches rely on Machine Learning and Deep Learning in order to create accurate and personalized recommendations for users in a given context. These models require big amounts of data with a variety of features such as time, location and user data in order to find correlations and patterns that other classical models such as matrix factorization and collaborative filtering cannot. This thesis researches, implements and compares a variety of models with the primary focus of Machine Learning and Deep Learning for the task of music recommendation and do so successfully by representing the task of recommendation as a multi-class extreme classification task with 100 000 distinct labels. By comparing fourteen different experiments, all implemented models successfully learn features such as time, location, user features and previous listening history in order to create context-aware personalized music predictions, and solves the cold start problem by using user demographic information, where the best model being capable of capturing the intended label in its top 100 list of recommended items for more than 1/3 of the unseen data in an offine evaluation, when evaluating on randomly selected examples from the unseen following week.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)