Charge into the Future Grid : Optimizing Batteries to Support the Future Low-Voltage Electrical Grid

University essay from Linköpings universitet/Fordonssystem

Abstract: The increase in electric vehicles and photovoltaic power production may introduce problems to the low-voltage distribution grid. With a higher number of electric vehicles, their accumulated charging power might breach the lowest allowed voltage level of the grid. Photovoltaic-modules can on the other hand exceed the highest allowed voltage level, by producing high accumulated power when the solar irradiance is high. Normally, electric distribution companies in Sweden reinforce the existing grid with more resilient infrastructure, such as stronger and larger cables or transformer stations. This is however a costly and time-consuming solution, which could be solved by using alternative means such as already existing resources. This Master's Thesis investigates how smart charging of batteries can support the low-voltage electrical grid with the increase in electric vehicles and photovoltaic power production. To do this, an optimization tool has been developed in Matlab. An existing model of a low-voltage grid is combined with the developed tool, where controllable batteries and photovoltaic-modules can be placed at specific households in the grid. The controllable batteries belong to either electric vehicles or stationary battery systems, and are intended to support the grid by the means of either reducing peak load powers, voltage variations, or a trade-off between them. Furthermore, this thesis investigates the maximum electric vehicle capability for a specific low-voltage electrical grid in Sweden. From the results, it can be concluded that smart charging of batteries can reduce the peak loads as well as voltage variations. The reduction of voltage variations for the entire low-voltage grid is greatest during the summer, when photovoltaic production generally is at its highest. The results also show that a stationary battery system can reduce the voltage variations to a greater extent, compared to an electric vehicle. Also, the introduction of multiple controllable batteries allows further support of the low-voltage grid. Regarding the maximum electric vehicle capability, the results show that the placement of the vehicles and the charging power strongly affect the maximum number of electric vehicles the low-voltage grid can manage.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)