Development of Acoustic Simulations using Parametric CAD Models in COMSOL

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: With constantly changing regulations on emissions, heavy commercial vehicles manufacturers have to adapt for their products to preserve their quality while meeting these new requirements. Over the past decades, noise emissions have become a great concern and new stricter laws demand companies to decrease their vehicle pass-by noise target values. To address the requirements from different disciplines, Scania follows a simulation driven design process to develop new concept models EATS. The collaboration among engineers from different fields is thereby necessary in order to obtain higher performance silencers. However, the preprocessing step in terms of acoustic simulations is time-consuming, which can slow the concept development process. In this thesis, a new method was introduced to automate the pre-processing of silencer acoustic models and allow for design optimisation based on acoustic performance results. A common Scania product study case was provided to several theses within the NXD organisation. The collaboration among the master thesis workers aimed to demonstrate the benefits of KBE and MDO and how they can be integrated within Scania’s current concept development and product introduction processes. The performed work was divided in the following steps: data collection, method development and concluding work. The first step consisted in gathering sufficient knowledge by conducting a thorough literature review and interviews. Then, an initial method was formulated and tested on a simplified silencer model. Once approved and verified, the method was applied to the study case EATS. The study case showed that a complex product can have its acoustic pre-processing step automated by ensuring a good connectivity among the required software and a correct denomination of the geometrical objects involved in the simulations. The method investigated how morphological optimisations can be performed at both global and local levels to enhance the transmission loss of a silencer. Besides optimising the acoustic performance of the models, the method allowed the identification of correlations and inter-dependencies among their design variables and ouput parameters.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)