A Comparison of EDMOS and Cascode Structures for PA Design in 65 nm CMOS Technology

University essay from Linköpings universitet/Linköpings universitet/Elektroniska komponenterTekniska högskolan

Abstract:

This thesis addresses the potential of implementing watt-level class-AB Power Amplifier (PA) for WLAN in 65 nm CMOS technology, at 2.4 GHz frequency. In total, five PAs have been compared, where the examined parameters were output power (Pout), linearity, power added efficiency (PAE), and area consumption. Four PAs were implemented using conventional cascode topology with different combination of transistors sizes in 65nm CMOS, and one PA using a high-voltage Extended Drain MOS (EDMOS) device, implemented in the same 65 nm CMOS with no process or mask changes. All schematics were created using Cadence Virtuoso CAD tools. The test benches were created using the Agilent's Advance Design System ( ADS) and simulated with the ADS-Cadence dynamic link.

The simulation results show that the EDMOS PA (L=350 nm) has the smallest area, but has harder to reach the required Pout. Cascode no. 3 (L= 500,260 nm) has the best Pout (29.1 dBm) and PAE (49.5 %). Cascode no. 2 (L= 500,350 nm) has the best linearity (low EVM). Cascode no. 1 (L=500,500 nm) has low Pout (27.7 dBm). Cascode no.4 (L=500,60 nm) has very bad linearity.

The thesis also gives an overview for CMOS technology, discusses the most important aspects in RF PAs design, such as Pout, PAE, gain, and matching networks. Different PA classes are also discussed in this thesis.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)