Using Player Modeling to Improve Automatic Playtesting

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: In this thesis we present two approaches to improve automatic playtesting using player modeling. By modeling various cohorts of players we are able to train Convolutional Neural Network based agents that simulate human gameplay using different strategies directly learnt from real player data. The goal is to use the developed agents to predict useful metrics of newly created game content. We validated our approaches using the game Candy Crush Saga, a non-deterministic match-three puzzle game with a huge search space and more than three thousand levels available. To the best of our knowledge this is the first time that player modeling is applied in a match-three puzzle game. Nevertheless, the presented approaches are general and can be extended to other games as well. The proposed methods are compared to a baseline approach that simulates gameplay using a single strategy learnt from random gameplay data. Results show that by simulating different strategies, our approaches can more accurately predict the level difficulty, measured as the players’ success rate, on new levels. Both the approaches improved the mean absolute error by 13% and the mean squared error by approximately 23% when predicting with linear regression models. Furthermore, the proposed approaches can provide useful insights to better understand the players and the game.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)