Prediction of Component Breakdowns in Commercial Trucks : Using Machine Learning on Operational and Repair History Data

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The strive for cost reduction of services and repairs combined with a desire for increased vehicle reliability has led to the development of predictive maintenance programs. In maintenance plans, accurate forecasts and predictions regarding which components in a vehicle is in risk of a breakdown is bene_cial to obtain since this enables components to be predictively exchanged or serviced before they break down and cause unnecessary downtime. Previous works in data driven predictive maintenance models typically utilize customer and operational data to predict component wear trough regressive or classi_er models. In this thesis the possibilities and bene_ts associated with utilizing vehicle repair and service history data for trucks in a predictive model is investigated. The repair and service data is a time series of irregularly sampled visits to a service centre and is used in conjunction with operational data and chassis con_guration data collected by a truck manufacturer. To tackle the problem a Random Forest, a Neural Network as well as a Recurrent Neural Network model was tested on the various datasets. The Recurrent Neural Network model made it possible to utilize the entire vehicle repair time series data whereas the Random Forest model used a condensed form of the repair data. The Recurrent model proved to perform signi_cantly better than the Neural Network model trained on operational data however it was not proven signi_cantly better than a Random Forest model trained on the condensed form of repair data. A conclusion that can be drawn is that repair history data can increase the performance of a predictive model, however it is unclear if the time sequence plays a part or if a list of previously exchanged parts works equally well.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)