Model-Based versus Data-Driven Control Design for LEACH-based WSN

University essay from KTH/Maskinkonstruktion (Inst.)

Abstract: In relation to the increasing interest in implementing smart cities, deployment of widespread wireless sensor networks (WSNs) has become a current hot topic. Among the application’s greatest challenges, there is still progress to be made concerning energy consumption and quality of service. Consequently, this project aims to explore a series of feasible solutions to improve the WSN energy efficiency for data aggregation by the WSN. This by strategically adjusting the position of the receiving base station and the packet rate of the WSN nodes. Additionally, the low-energy adaptive clustering hierarchy (LEACH) protocol is coupled with the WSN state of charge (SoC). For this thesis, a WSN was defined as a two dimensional area which contains sensor nodes and a mobile sink, i.e. a movable base station. Subsequent to the rigorous analyses of the WSN data clustering principles and system-wide dynamics, two different developing strategies, model-based and data-driven designs, were employed to develop two corresponding control approaches, model predictive control and reinforcement learning, on WSN energy management. To test their performance, a simulation environment was thus developed in Python, including the extended LEACH protocol. The amount of data transmitted by an energy unit is adopted as the index to estimate the control performance. The simulation results show that the model based controller was able to aggregate over 22% more bits than only using the LEACH protocol. Whilst the data driven controller had a worse performance than the LEACH network but showed potential for smaller sized WSNs containing a fewer amount of nodes. Nonetheless, the extension of the LEACH protocol did not give rise to obvious improvement on energy efficiency due to a wide range of differing results.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)