Modern Electrical/Electronic Infrastructure for Commercial Trucks : Generic Input/Output nodes for sensors and actuators in Commercial Trucks

University essay from KTH/Radio Systems Laboratory (RS Lab)

Abstract: The presence of electrical and electronic circuits in commercial trucks has increased at a very fast rate during recent decades. With advancements in embedded systems and the introduction of electric controls in the automotive industry, the design of complex electric systems for the vehicles has become one of the major design challenges. In the commercial truck industry, the development cycles are almost a decade long. Therefore, it is a big challenge to introduce a new architecture to accommodate the modern automotive technologies in the upcoming generation of trucks. Currently, the commercial truck industry relies highly on a federated electrical/electronic (E/E) architecture. In this architecture, Electronic Control Units (ECU) are responsible for computation and Input/Output operations. These ECUs are clustered into different domains based on their respective functions. However, these domains are not isolated from each other. These modules communicate with each other using a vehicular network, which is typically a controller area network in the current trucks. In the automotive industry, automation is increasing at a fast pace. As the level of automation increases, the need for high computation also increases, which increases the overall costs. This study aims to address this problem by introducing an integrated E/E architecture where all the computational power is concentrated at one place (or perhaps two or three places to allow for redundancy). This study proposes to introduce a lowcost replacement for the current ECUs with more limited computational power but with generic input/output interfaces. This thesis provides the reader with some background of the current E/E architecture of commercial trucks and introduces the reader to ECUs. Additionally, the relevant network architectures and protocols are explained. A potential solution, based upon the centralized computation based E/E architecture and its implementation are discussed followed by a detailed analysis of the replacements for ECUs. The result of this analysis, if adopted, should result in a reduction of manufacturing and design costs, as well as make the production and maintenance process easier. Moreover, this should also have environmental benefits by reducing fuel consumption.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)