Geo-distributed multi-layer stream aggregation

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The standard processing architectures are enough to satisfy a lot of applications by employing already existing stream processing frameworks which are able to manage distributed data processing. In some specific cases, having geographically distributed data sources requires to distribute even more the processing over a large area by employing a geographically distributed architecture.‌ The issue addressed in this work is the reduction of data movement across the network which is continuously flowing in a geo-distributed architecture from streaming sources to the processing location and among processing entities within the same distributed cluster. Reduction of data movement can be critical for decreasing bandwidth costs since accessing links placed in the middle of the network can be costly and can increase as the amount of data exchanges increase. In this work we want to create a different concept to deploy geographically distributed architectures by relying on Apache Spark Structured Streaming and Apache Kafka. The features needed for an algorithm to run on a geo-distributed architecture are provided. The algorithms to be executed on this architecture apply the windowing and the data synopses techniques to produce a summaries of the input data and to address issues of the geographically distributed architecture. The computation of the average and the Misra-Gries algorithm are then implemented to test the designed architecture. This thesis work contributes in providing a new model of building geographically distributed architecture. The experimental results show that, for the algorithms running on top of the geo distributed architecture, the computation time is reduced on average by 70% compared to the distributed setup. Similarly, and the amount of data exchanged across the network is reduced on average by 99%, compared to the distributed setup.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)