Morphology formation via a ternary Cahn-Hilliard system during one species evaporation as a moving boundary problem - Finite Element approximation and implementation in FEniCS

University essay from Karlstads universitet/Institutionen för ingenjörsvetenskap och fysik (from 2013)

Abstract: In this thesis we derive a coupled system of Cahn-Hilliard equations posed in a domain with moving boundary using arguments from thermodynamics. The physical setting we have in mind is a ternary solution observed during one species evaporation as a moving boundary problem. The mixture is made of two types of polymers blended in a solvent that is allowed to evaporate at part of the surface of the domain. After formulating the evolution system as a moving-boundary problem with kinetic interface condition, we fix the moving boundary to facilitate a suitable numerical approximation. We project the resulting model equations on a finite element space and then integrate the obtained system in Python using FEniCS. We show numerically the formation of morphologies and track the evolution of the remaining solvent and of the moving boundary position. The conjecture is that such a system would produce phase separation and that the resulting morphologies are mappable to the observations of organic solar cells. Finally, we study the effect of the most relevant parameters on the output of our Cahn-Hilliard system, particularly on the speed of the moving boundary and of the morphology formation.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)