New encapsulation concept for robot controller cabinet

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: Robot controller cabinets are specified with interfaces which make it possible to connect different modules for completing numerous tasks that are chosen for the robot manipulators. Different interfaces will be utilized depend on the kind of tasks and settings that are chosen. Thus not every interface will be put into use in a controller cabinet, some are left behind. In order to fulfill the encapsulation standards of electrical enclosures, the unoccupied interfaces are covered and sealed with on-screwed cover plates and gaskets during the assembly of the cabinet. However, a new method for encapsulation hope to be investigated and introduced to improve the current solution with respect to the encapsulation requirements from ABB.  The introduced new solution is a knockout concept. The detailed design is investigated with the help of finite element analysis with the explicit dynamics method used for simulating the punching processes of the knockout designs. Where three different design variables are put into consideration for finding the most optimum knockout design.  The results show that, for the particular steel plate provided by ABB, a V-grooved knockout design with a grooving angle of 90 degrees and an unaffected thickness of 0.1 mm has the best performance in terms of smoothness at edges and the amount of plastic strain occurred in the material.  Traditional manufacturing methods to manufacture the obtained knockout design appear to be extremely time consuming and thus not profitable for mass production. However, a type of fairly recent developed grooving machines, the so called V-grooving machine, is believed to be able to solve the manufacturing problem.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)