Generating 3D-objects using neural networks

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Author: Patrik Stigeborn; [2018]

Keywords: ;

Abstract: Enabling a 2D- to 3D-reconstruction is an interesting future service for Mutate AB, where this thesis is conducted. Convolutional neural networks (CNNs) is examined in different aspects, in order to give a realistic perception of what this technology is capable of. The task conducted, is the creation of a CNN that can be used to predict how an object from a 2D image would look in 3D. The main areas that this CNN is optimized for are Quality, Speed, and Simplicity. Where Quality is the output resolution of the 3D object, Speed is measured by the number of seconds it takes to complete a reconstruction, and Simplicity is achieved by using machine learning (ML). Enabling this could potentially ease the creation of 3D games and make the development faster. The chosen solution is to use two CNNs. The first CNN is using convolution to extract features from an input image. The second CNN is using transpose convolution to create a prediction of how the object would look in 3D, from the features extracted by the first neural network. This thesis is using an empirical development approach to reach an optimal solution for the CNN structure and its hyperparameters. The 3D-reconstruction is inspired by a sculpting process, meaning that the reconstruction starts with a low resolution and improves it iteratively. The result shows that the quality gained from each iteration grows exponentially whilst the increased time grows a lot less. Thereof, the conclusion is that the trade-off between speed and quality is in our favor. However, when looking at commercializing this technology or deploy it in a professional environment, it is still too slow to generate high resolution output. Also, in this case, the CNN is fragile when there are a lot of unrecognized shapes in the input image.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)