Predicting catastrophic failure in barrier coated packaging board and paper after creasing and folding : Proposing a methodology to predict barrier failure after creasing and folding

University essay from Karlstads universitet/Avdelningen för kemiteknik; Karlstads universitet/Institutionen för ingenjörs- och kemivetenskaper

Abstract: Different methods to predict barrier failure in packaging board or paper after converting were investigated. The approach was to compare substrates before and after creasing/folding by applying different barrier tests and to propose a methodology to predict failure in the barrier layer.  Different coatings were used to develop and verify the methodology; a hemicellulose based dispersion barrier coating, a dispersion coated PVOH coating and an extrusion coated PE. Creasing was performed according to standard procedure using recommended creasing geometries. Folding of paper was performed by a gentle creasing with a board backing followed by folding the paper between two metal plates with a well defined distance. The first step in the evaluation was to visually inspect creased/folded substrates by light microscopy to search for coating failures in form of cracks. Both good and bad samples were then tested for grease resistance with a standard test, i.e. TAPPI 454. The TAPPI 454 test showed to be effective to expose barrier failure since oil would penetrate quite fast through the creasing line of cracked samples. Even some samples that appeared to have no cracks in the light microscope showed failure with the grease test. The results showed that only the PE coated samples could sustain a barrier after creasing and folding. This was probably due to a high ductility of the PE-coating combined with a high thickness. The water vapour transmission rate, WVTR, of the samples that passed the TAPPI 454 test was then measured on the samples that endured the grease resistance test. Since PE is a good water vapour barrier, WVTR-measurements were proper for detecting barrier defects. The VWTR of the creased/folded samples was slightly higher for the creased samples than the un-creased references despite the absence of cracks. This was probably due to that the barrier layer got thinner as a result of the strains applied on the coating during the creasing/folding operation.  A methodology to predict barrier failure in barrier coated packaging board and paper after creasing and folding was proposed. Well defined creasing and folding geometries were used in combination with screening for cracks in the barrier layer, first by visual inspection in light microscopy and then by a standard grease resistance test. The samples that passed then screening tests could then be analyzed using more exact but also more time consuming methods such as WVTR.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)