Characterization of graphene-based sensors for forensic applications : Evaluating suitability of CVD graphene-based resistive sensor for detection of amphetamine

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Recent improvements in sensor technology and applications can be partly attributed to the advancements in microand nanoscale fabrication processes and discovery of novel materials. The emergence of reliable and inexpensive methods of production of monolayer materials, such as graphene, has revealed the advantageous electronic properties which when utilized in sensory elements can significantly enhance response to the input signal. Hence, graphene-based sensory devices have been widely investigated as the exotic properties of the carbon nanomaterial allow for cost-efficient scalable production of highly sensitive transduction elements. Previous studies have shown successful detection of n-type dopants such as ammonia and low pH solution. As the amine group in amphetamine molecules is known to behave as an electron donor, in this study, graphene conductivity changes in response to exposure to amphetamine salt solutions were investigated.Graphene formed by chemical vapour deposition (CVD) was transferred onto SiO2 substrate with gold electrodes to form a resistive transducer. Observation of large intensity ratio of graphene characteristic 2D and G peaks as well as minimal defect peaks from Raman spectroscopy analysis proved the integrity of the carbon monolayer was maintained. The atomic force microscopy and resistance measurements results showed the storage of these sensory elements in ambient conditions results in adsorption of impurities which considerably influence the electronic properties of graphene. Upon exposure to amphetamine sulfate and amphetamine hydrochloride, conductivity decrease was detected as expected. Signal enhancement by excitation of 470nm light did not show a significant increase in response magnitude. However, the low reliability of sensor response limited further analysis of the chemical sensor signal. Non-selective sensor response to amphetamine can be detected, but improvements in device design are needed to minimize contamination of the graphene surface by ambient impurities and variations in the sensor system.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)