Techno-Economic Analysis of an Innovative Purely Solar Driven Combined Cycle System based on Packed Bed TES Technology

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: With increasing awareness of environmental issues and worldwide requirements for sustainable development, renewable energy technologies with lower environmental impact, especially those having abundant resources like wind and solar energy, attract more attention. Concentrating Solar Power (CSP) is one of the most promising solar energy technologies. Indeed, thermal energy storage (TES) units could be integrated into CSP plants, enhancing their flexibility and capacity factor. However, tower based CSP plants still remain cost intensive. This study evaluates the performance of a 55MWe combined-cycle CSP plant with rock-bed TES located in Sevilla, Spain. Sensitivity analysis has been performed to assess the influence of critical parameters. Furthermore, in order to decrease the costs with increasing efficiency, improved CSP plant schemes have been proposed. In the study, EES, SAM and TRNSYS are used to design and simulate the model from technological perspective, then the capital and operational costs are calculated in MATLAB. For one-year simulation of the designed case, the performance of the plant is determined by the trade-off among several conflicting factors. The study focuses on three key indicators to measure the performance- levelized costs of electricity (LCoE), capital expenditure (CAPEX) and efficiency factor (UF). As long as CAPEX is within the acceptable range, LCoE would be the most concerned one-as low as possible, then followed by UF. Compared to conventional CCGT plant, the proposed combined-cycle tower-based CSP plant, with efficiency of 0.49 and LCoE of 196USD/MWe, enables efficiency improvements, while both CAPEX and LCoE are higher. On the other hand, it has to be noticed that CCGT relies on fuel (natural gas) price, which means higher risks and operational expenditure (OPEX). A sensitivity study is involved varying gas turbine expansion ratio (to vary its outlet temperature and therefore supply power for the bottoming Rankine cycle), size of TES and solar multiple (SM). It can be found that same LCoE and UF could be achieved with lower CAPEX by setting appropriate parameters. The study also introduces two improved CSP plant schemes with sensitivity study. To some extent, the LCoE decreases due to increasing power output and the efficiency of the system simultaneously increases.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)