Investigating Magma Plumbing Beneath Anak Krakatau Volcano, Indonesia : Evidence for Multiple Magma Storage Regions

University essay from Berggrundsgeologi

Abstract: Improving our understanding of magma plumbing and storage remains one of the majorchallenges for petrologists and volcanologists today. This is especially true for explosivevolcanoes, where constraints on magma plumbing are essential for predicting dynamicchanges in future activity and thus for hazard mitigation. This study aims to investigate themagma plumbing system at Anak Krakatau; the post-collapse cone situated on the rim of the1883 Krakatau caldera. Since 1927, Anak Krakatau has been highly active, growing at a rateof ~8 cm/week. The methods employed are a.) clinopyroxene-melt thermo-barometry (Putirkaet al., 2003; Putirka, 2008), b.) plagioclase-melt thermo-barometry (Putirka, 2005), c.)clinopyroxene composition barometry (Nimis & and Ulmer, 1998; Nimis, 1999; Putirka,2008) and d.) olivine-melt thermometry (Putirka et al., 2007). Previously, both seismic(Harjono et al., 1989) and petrological studies (Camus et al., 1987; Mandeville et al., 1996a;Gardner et al., in review, J. Petrol.) have addressed the magma plumbing beneath AnakKrakatau. Interestingly, petrological studies indicate shallow magma storage in the region of2-8 km, while the seismic evidence points towards a mid-crustal and a deep storage, at 9 and22 km respectively.This study shows that clinopyroxene presently crystallizes in a mid-crustal storage region(8-12 km), a previously identified depth level for magma storage, using seismic methods(Harjono et al., 1989). Plagioclases, in turn, form at shallower depths (4-6 km), in concertwith previous petrological studies (Camus et al., 1987; Mandeville et al., 1996a; Gardner etal., in review, J. Petrol.). Pre-1981 clinopyroxenes record deeper levels of storage (8-22 km),indicating that there may have been an overall shallowing of the plumbing system over thelast ~40 years. The magma storage regions detected coincide with major lithologicalboundaries in the crust, implying that magma ascent and storage at Anak Krakatau is probablycontrolled by crustal discontinuities and/or density contrasts. Therefore, this study shows thatpetrology has the sensitivity to detect magma bodies in the crust where seismic surveys faildue to limited resolution. Combined geophysical and petrological surveys offer an increasedpotential for the thorough characterization of magma plumbing at active volcanic complexes.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)