Reinforcement Layout in Concrete Pile Foundations : A study based on non - linear finite element analysis

University essay from KTH/Betongbyggnad

Abstract: The main topic of this thesis concerns the behavior of concrete pile cap supported by four piles with two varying positions of longitudinal reinforcements. The positions include top of piles and bottom of the pile cap. For this purpose, non-linear finite element models of a pile cap are created using software ATENA 3D. The goal was to observe which position of reinforcement yields the higher bearing capacity and to observe the failure modes in the models. To achieve the above goals, a short review of theoretical background concerning shear phenomena is performed. This, in order to enhance the knowledge regarding shear stresses, shear transfer mechanism, factors affecting shear capacity, modes of shear failure and relate them to the behavior of pile cap. Furthermore, the calculation of shear resistance capacity based on Eurocode 2 using strut and tie method and sectional approach is presented. The numerical analysis started by creating four pile cap models in ATENA 3D. The difference between the models being the position and ratio of longitudinal reinforcement. The purpose behind two reinforcement ratios were to observe the behavior of pile cap model in two cases: a) when failure occurs prior to yielding of reinforcement; b) when failure occurs while reinforcement is yielding. The models are then analyzed using software ATENA Studio. The results revealed that placing the reinforcement on top of piles in case (a) increased the capacity of the model by 23.5 % and in case (b) increased the capacity by 18.5 %. This because the tensile stresses were found to be concentrated on top of piles rather than the bottom of the pile cap. The final failure mode in the model with top reinforcement position was crushing of the inclined compressive strut at the node beneath the column and in the model with bottom reinforcement position, the splitting of the compressive strut due to tensile stresses developed perpendicular to the inclined strut. The potential advantage of placing the reinforcement at the bottom were a better crack control in serviceability limit state and a slightly less fragile failure mode compared to the top position of reinforcement. A parametric study was performed in the model as well to observe the effects of various parameters on the results obtained. It was found that fracture energy had the most significant effect on the results obtained. Finally, a comparison between the results of numerical analysis and analytical design approaches based on strut and tie method and sectional approach was performed. The comparison reveals that the design values obtained based on strut and tie method for the model were very conservative. In particular, the equation for the strength of inclined compressive strut based on Eurocode 2 was very general.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)