Life Cycle Assessment and comparison of the climate impact of structural members and floor systems constructed in concrete, steel and timber

University essay from KTH/Byggnadsmaterial

Abstract: In this report the climate impact is determined for some basic structural elements made in steel,>mber and concrete. The aim is to compare the climate impact of these three building materials byquan>fying the emissions related to the produc>on and construc>on of some typical structures.The comparison comprise two parts, were one is the comparison of members in bending,compression and tension and the other part is the comparison of a couple of floor structures.The emissions are determined through a Life Cycle Assessment, LCA. The members are comparedwith respect to their load bearing resistance and the floor structures is compared per square meter.The mo>va>on for this inves>ga>on is that the construc>on industry is a large contributor to the totalamount of greenhouse gas emissions and in order to reduce these emissions new solu>ons andprac>ses must be adopted. A more thoughVul choice of the materials used in structures has thepoten>al of reducing the emissions.The method of determining the climate impact is based on first determining the material quan>>esfor all the inves>gated structures and then calcula>ng the amount of carbon dioxide equivalentsrelated to the produc>on of these materials with the help of a Life Cycle Assessment.The material quan>>es of the structural members is determined based on the load. The dimensionsof the cross sec>on is determined with respect to the required load resistance. The materialquan>>es of the floor structures is based on some exis>ng solu>ons from manufacturers.The study show that the >mber based design solu>ons almost always has a smaller climate impactand that the differences can be considerable. Members made in steel oZen result in very largeamount of greenhouse gas emissions but the sca[er in the results indicate that the origin of the steelhas great importance. Primary steel has a much larger impact as opposed to recycled steel.The comparison of the floor designs show that beyond the material choice itself, also the materialefficiency is important. The hollow core slab made in concrete is a very material efficient design andmay in some cases be on par with >mber based designs.The massive >mber floors made of Cross Laminated Timber, CLT, has a fairly large climate impactbecause of the sheer volume of material and may be on the same level as the floor made in concretefor some scenarios. There is however a wide range in the result based on whether the material istransported a long distance and depending on the choice of insula>on material. If these choices isop>mised, the emissions of the CLT floor is instead on a much lower level, closer to that of the otherlightweight floors inves>gated.The process of evalua>ng and comparing the material choices and structural designs form a lifecycleperspec>ve can be u>lised during the design in order to reduce the emissions. With a be[erknowledge of the climate impact of the design, be[er choices can be made in order to reduce theemissions.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)