Thermal modeling of power electronic components in excitation systems

University essay from

Abstract: This thesis work aims at developing a model in Visual Basic for Applications and Microsoft Excel that can be used to predict temperatures in semiconductor devices for two commercial products made by Voith Hydro AB, and via simulation of the model determine the maximum current that can be conducted through the two products. The two products are called field exciters. A field exciter controls the rotor current of a generator with the help of semiconductor devices. When used in a power converter, such devices give rise to losses. A certain amount of the electrical energy passing through the converter is lost in form of heat. If the thermal energy is not dissipated, the temperature in the semiconductor device will rise. This will eventually lead to device failure when the temperature exceeds a certain temperature threshold which depends on the semiconductor material. The proposed model allows to predict these losses and the corresponding temperatures for a specified field current and ambient temperature. The model was validated experimentally. A simplified brushless excitation system was designed and constructed, temperature measurements were carried out for different field currents and later used to validate the model. This thesis concludes that the model developed in Visual Basic predicts temperatures with good results for the PWM-30A but not as good for the PWM-150A. The model simulations show that the PWM-30A can operate with a continuous current of 30 A, for a short duration of 10 seconds it can step up the current to 60 A at an ambient temperature of 50 °C. When the PWM-30A is cooled by forced convection, it can conduct a continuous current of 50 A at an ambient temperature of 50 °C. During field forcing, the PWM-30A can step up the current to 100 A for a duration of 10 seconds. It has been concluded that the PWM-150A cannot, without further testing, conduct a larger current than it was originally designed for, which is 150 A continuously at an ambient temperature of 40 °C. During field forcing it can step up the current to 240 A for 10 seconds.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)