Negative energy elasticity and a model for the behavior of the residual strain in doubly cross-linked gels fabricated by shear strain

University essay from Uppsala universitet/Polymerkemi

Abstract: Doubly cross-linked gels were fabricated based on tetra-poly(ethylene glycol) (Tetra-PEG) by shear strain. These are gels with two network structures present in the same polymeric network. The second network structure is introduced by applying a mechanical field to the first natural network structure. These doubly cross-linked gels indicated a negative energy elasticity supporting earlier findings where the energy elasticity was found significantly negative for Tetra-PEG gel. Acquired results indicate implications for past research on the elasticity of polymer gels where the energy contribution was approximated to zero. Obtained results also indicated that the modulus of rigidity for the doubly cross-linked gels is constant regardless of applied shear strain during fabrication. This would indicate that the same second network structure is formed for the interval of 25-800% applied shear strain. The residual strain for the fabricated gels can be well-described using an exponential fitting of the apparent shear modulus of the first network structure and an expression derived from the two-network theory and classic rubber theory. These theories also seem to predict the experimental residual strains for lower strain regions (<100%) quite well. However for larger strain regions (>100%) non-linear effects seem to affect the results causing a deviation. A slight increased modulus of rigidity was noted for the doubly cross-linked gels compared to the regular Tetra-PEG gel. However as the reproducibility of the concluded measurements could not be confirmed during this thesis the results are not conclusive and only indicate the conclusions mentioned above.   

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)