Tracing late Holocene changes in lake-water total organic carbon : A multi-proxy approach based on sediment bio-geochemistry and a faecal biomarker

University essay from Umeå universitet/Institutionen för ekologi, miljö och geovetenskap

Abstract: Long-term dynamics of lake-water total organic carbon (LW-TOC) concentrations in freshwater lakes provide an important perspective on the recent increases in LW-TOC observed in many of these systems and may assist with the identification of natural and anthropogenic drivers of change. This study examines how LW-TOC in Dragsjön, a lake situated in an area with a long history of anthropogenic land use, has changed in response to natural and anthropogenic perturbations throughout the Holocene. To provide a better understanding of the processes involved, a multi-proxy study was conducted and included multi-element geochemistry (17 major and trace elements), biogenic silica, organic matter (OM) content and composition, and the faecal biomarker “coprostanol”. The direct biomarker for anthropogenic presence, “coprostanol”, and a detailed characterisation of OM composition are for the first time applied for tracing changes in LW-TOC. Natural processes contributed to stable LW-TOC concentrations in Dragsjön for most part of the Holocene. Humans were present in the catchment from AD 100 as indicated by coprostanol, but did not begin to affect LW-TOC until c. AD 1500. In the last 500 years LW-TOC steadily declined from 17 to 10 mg L-1 in response to anthropogenic alterations to the terrestrial biomass balance. The increase in LW-TOC during the last 70 years likely represents a recovery from anthropogenic disturbance rather than a baseline shift in response to any of the number of proposed recent stressors. The faecal biomarker coprostanol and OM composition provided information essential for identifying and characterising the effects of anthropogenic disturbance.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)