Cloud connectivity for embedded systems

University essay from KTH/Kommunikationssystem, CoS

Abstract: Deploying an embedded system to act as a controller for electronics is not new.  Today these kinds of systems are all around us and are used for a multitude of purposes. In contrast, cloud computing is a relatively new approach for computing as a whole. This thesis project explores these two technologies in order to create a bridge between these two wildly different platforms. Such a bridge should enable new ways of exposing features and doing maintenance on embedded devices. This could save companies not only time and money while dealing with maintenance tasks for embedded systems, but this should also avoid the needed to host this maintenance software on dedicated servers – rather these tasks could use cloud resources only when needed. This thesis explores such a bridge and presents techniques suitable for joining these two computing paradigms together. Exploring what is included in cloud computing by examining available technologies for deployment is important to be able to get a picture of what the market has to offer. More importantly is how such a deployment can be done and what the benefits are. How technologies such as databases, load-balancers, and computing environments have been adapted to a cloud environment and what draw-backs and new features are available in this environment are of interest and how a solution can exploit these features in a real-world scenario.  Three different cloud providers and their products have been presented in order to create an overview of the current offerings.  In order to realize a solution a way of communicating and exchanging data is presented and discussed. Again to realize the concept in a real-world scenario. This thesis presents the concept of cloud connectivity for embedded systems. Following this the thesis describes a prototype of how such a solution could be realized and utilized. The thesis evaluates current cloud providers in terms of the requirements of the prototype. A middle-ware solution drawing strengths from the services offered by cloud vendors for deployment at a vendor is proposed. This middle-ware acts in a stateless manner to provide communication and bridging of functionality between two parties with different capabilities. This approach creates a flexible common ground for end-user clients and reduces the burden of having the embedded systems themselves process and distribute information to the clients.  The solution also provides and abstraction of the embedded systems further securing the communication with the systems by it only being enabled for valid middle-ware services.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)